
Self-Organizing Molecular Field Analysis: A Tool for Structure-Activity
Studies

Daniel D. Robinson, Peter J. Winn, Paul D. Lyne, and W. Graham Richards*

Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom

Received June 29, 1998

Self-organizing molecular field analysis (SOMFA) is a novel technique for three-dimensional
quantitative structure-activity relations (3D-QSAR). It is simple and intuitive in concept and
avoids the complex statistical tools and variable selection procedures favored by other methods.
Our calculations show the method to be as predictive as the best 3D-QSAR methods available.
Importantly, steric and electrostatic maps can be produced to aid the molecular design process
by highlighting important molecular features. The simplicity of the technique leaves scope for
further development, particularly with regard to handling molecular alignment and conforma-
tion selection. Here, the method has been used to predict the corticosteroid-binding globulin
binding affinity of the “benchmark” steroids, expanded from the usual 31 compounds to 43
compounds. Test predictions have also been performed on a set of sulfonamide endothelin
inhibitors.

Introduction

Quantitative structure-activity relations (QSAR) and
three-dimensional quantitative structure-activity rela-
tions (3D-QSAR) have had a profound impact on me-
dicinal chemistry.1-4 The ability to produce quantitative
correlations between three-dimensional properties of
molecules and the biological activity of these compounds
is of inestimable value in deciding upon the choice of
future synthetic chemistry.

Pre-eminent among the techniques used is compara-
tive molecular field analysis (CoMFA) introduced by
Cramer.5 As in the related GRID technique of Goodford,6
molecules are sited in a three-dimensional grid. At each
grid point an interaction energy related to shape or
electrostatic potential is calculated. For a series of
molecules, the biological activity is related to the set of
interaction energies which may run into many thou-
sands of variables. Partial least squares analysis7 (PLS)
is then used to extract the relationship between the
interaction energies and the biological activity. The
problem is greatly underdetermined, but PLS produces
the underlying relationship by reducing the dimension-
ality of the descriptor space in a way that leaves the
most significant contributions to the correlation. Too
much insignificant data or noise can degrade the
statistical quality of the QSAR.8 For instance, making
the grid too fine may lower the quality of the correla-
tion.9 To minimize such problems, techniques have been
developed to filter data points prior to the PLS step.10,11

For example, grid points where the calculated interac-
tion energy is low may be omitted. Results are also
improved by variable selection procedures12-17 and by
grouping points.18

Molecular similarity was introduced as a concept by
Carbo.19 The use of similarity as a 3D-QSAR tool was
introduced by Good et al.9 and used by several other
groups.15,20,21 Similarity between pairs of molecules can
be defined in terms of shape or of electrostatic potential,
but instead of a large number of values at grid points

we have a single numerical measure of overall similar-
ity. A set of molecules may be compared to a single
reference molecule to yield a predictive QSAR.22-25 More
information can be obtained from a matrix of the
similarity indices between all pairs of molecules in a
training set using PLS to derive a QSAR.9,26,27 Statisti-
cally, similarity matrix correlations are comparable with
those from CoMFA9,15 but, while they have the advan-
tage of much smaller data matrices than those of
CoMFA, there is the corresponding loss of a graphical
display of significant features of the molecules.

Our new SOMFA technique has similarities to both
techniques, but has the advantage of its inherent
simplicity. It has affinities with the Free-Wilson
method28 and also the work of Doweyko29-32 but again
is conceptually simpler and more comprehensive. Like
CoMFA, a grid-based approach is used. However no
probe interaction energies need to be evaluated. Like
the similarity methods it is the intrinsic molecular
properties, such as shape, that are used to develop the
QSAR models. Further, because of its inherent sim-
plicity we believe the method has great potential for
development, particularly in regard to the alignment
and conformational problems inherent in 3D-QSAR.
Ongoing work in this area shows considerable promise.

Methods

The SOMFA Methodology. As with all QSAR techniques
a model is built from a set of molecules of known activity; these
molecules constitute the training set. Crucial to SOMFA is the
notion of the “mean centered activity”. By subtracting the
mean activity of the molecular training set from each mol-
ecule’s activity, we obtain a scale where the most active
molecules have positive values and the least active molecules
have negative values.

Three-dimensional grids are created as in other QSAR
techniques with values at the grid points representing the
shape or electrostatic potential. Shape values are given a value
of 1 inside the van der Waals envelope, 0 outside. Electrostatic
potential values at grid points are calculated in the normal
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manner from the partial charges distributed across the atom
centers. The most important step is that the value of the shape
or electrostatic potential at every grid point for a given
molecule is multiplied by the mean centered activity for that
molecule. This weights the grid points so that the most active
and least active molecules have higher values than the less
interesting molecules close to the mean activity. It thus acts
as a form of descriptor filtering.

In general, a SOMFA grid can be trained on any calculable
molecular property. The grids for each molecule in the training
set are combined to give master grids for each property. The
value of a SOMFA master grid point at a given x,y,z is defined
by

In the examples presented here, the mean centered activity
was represented on a logarithmic scale. The values at each
point of a property master grid can be displayed to highlight
features favorable or unfavorable to activity. For example, the
shape master grid is a template of the areas of steric bulk
which enhance or detract from activity.

A QSAR relating a property, such as shape, to molecular
activity can be derived from the property master grid in the
following way. For every molecule (i) in the training and
prediction set, an estimate of the activity of the molecule as
defined by a certain property can be obtained by using eq 2.

Linear regressions between the SOMFAproperty,i values and the
logarithms of the experimental activities for the training set
are then derived. Calculating the correlation coefficient indi-
cates the potential importance of a given property. The linear
equations produced can be used to predict the activity of
compounds in the prediction set from their SOMFAproperty,i

values. A better method is to combine the predictive power of
the different SOMFAproperty,i. Here we combined the individual
property predictions using a weighted average of the shape
and electrostatic potential based QSAR, using a mixing
coefficient (c1) as in eq 3.

Clearly multiproperty predictions could have been obtained
through multiple linear regression. Using eq 3 instead gives
greater insight into the resultant model by allowing the study
of the variation in predictive power with different values of
c1.

A Simplified Example. Table 1 shows the structures of
three molecules together with their binding affinities for a

hypothetical binding site. The example is set up such that a
hydroxyl group enhances binding and excess steric bulk
adjacent to the hydroxyl group, associated with the methyl
groups in compounds 1 and 2, reduces binding. The first step
in the SOMFA process is to calculate the mean centered
affinities/activities for our known molecules. In doing this we
achieve a scale of activity where all high activity compounds
have a positive activity, while all low activity compounds have
a negative activity. The molecules are aligned by superimpos-
ing the rings, as in Table 1. We now create a grid around them.
In our simplified example we add the mean centered binding
affinity (defined in Table 1) of each molecule to every grid point
crossed by the molecule. As shown in Figure 1, this gives a
trained grid based on molecular shape. The common OH group
present in the two more active molecules is left with a net
positive grid value associated with it. The common benzenoid
core of all the molecules has no net value associated with it,
and the methyl groups have a negative grid value associated
with them. Thus the mean centered activities have been used
as a filtering mechanism to highlight the features which
differentiate the high-affinity and low-affinity compounds. An
important point is that the benzene ring is not found to be
significant. This set of three is not diverse enough for any
conclusion to be made about this structural feature, and
SOMFA correctly highlights this and filters it from the
analysis. The final result is a grid-based map that can be used
to aid molecular design of compounds with enhanced binding
affinity for our hypothetical site. Since the method is grid-
based, there is no necessity for the compounds under study to
be structural analogues, only that they can be suitably aligned.
We would expect any number of diverse compounds with a
common binding site to be suitable for treatment by this
method.

In general we expect that high-activity compounds with
common structural features (i.e., a pharmacophore) would
overlay these features at the same point on a master grid. The
grid values from successive high-activity compounds would
reinforce each other leading to a final master grid with positive
value associated with the features common to these high-
activity compounds. Similarly low-activity compounds would
also be expected to have some common structural features that
lead to a build up of negative grid values. Since the grid values
are assigned according to mean centered activity, compounds
with intermediate activity will have little effect on the final
grid values. It is clear from this description that overly small
data sets will not produce the overlapping of features required
for SOMFA. The quality of the model does improve rapidly
with data size, and this is not expected to be a problem for
normal size QSAR data sets (10 or more compounds).

Returning to our hypothetical example, the trained grid can
be used to predict the activity of a novel compound such as
the one in Figure 2. When the structure is overlaid on the
trained SOMFA lattice, we can see that the molecule is
associated with only one area of poor steric overlap while
simultaneously possessing the hydroxyl group which we have

Table 1. Example of a Set of Molecules of Varying Activity,
Together with Their Mean Centered Binding Affinities, for a
Hypothetical Active Site

structure binding affinity
mean centered
binding affinity

1 -1

2 0

3 1

SOMFA x, y, z )

∑
i

Training•Set

Propertyi(x,y,z)Mean•Centred•Activityi (1)

SOMFAproperty,i )

∑
x
∑

y
∑

z

Propertyi(x,y,z)SOMFAx, y, z (2)

Activity ) c1ActivityShape + (1 - c1)ActivityESP (3)

Figure 1. The distribution of the values from the training of
the SOMFA lattice for the compounds in Table 1. The broken
lines show the outline of the original molecules.
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identified as being the most important feature for activity.
From a summation of all of these good and poor overlaps,
SOMFA would conclude that methyl-phenol would have an
affinity for the binding site between 2,6-dimethyl phenol and
phenol. This value is intuitively in agreement with our
knowledge of the hypothetical binding site.

The SOMFA Code. The initial version of SOMFA has been
coded to have the following features, which have been utilized
to produce the results in this article. Molecular alignment can
be performed using a principal component analysis method
(PCA)33,34 to align common molecular cores defined by the user.
Code was also developed to automatically set up SOMFA grids
for each molecule in the prediction set for either, or both,
electrostatics and shape. Combining individual molecular grids
can produce master grids, and these can be visualized via a
graphical interface. The interface was designed to display only
those grid points with values above a threshold level defined
by a hard-coded function, thus displaying only the maxima
and minima of the master grids. The SOMFAProperty values,
SOMFAESP and SOMFAshape, were evaluated by the SOMFA
code and written to disk. All linear regression and correlation
calculations were performed in Excel 5.0.

The typical resources required by the code can be deter-
mined from the following example. SOMFA grids with 2 lattice
points per angstrom over a 25 Å cube used approximately 1.5
MB of storage per molecule. This is well within the capabilities
of a modern workstation PC. Calculations on such a lattice
took approximately 30 s on a dual processor 300 MHz Pentium
II under Microsoft Windows NT4.0.

The PCA alignment technique used here is only suitable
for structural analogues, with a readily identifiable structural
motif. The common structural motif is defined by the user, and
the coordinates of each atom in the motif are stored in three
vectors, Xi, Yi, and Zi, for each molecule, i. The centroid of the
motif for each molecule is then shifted to the origin by
subtracting the mean Xi, Yi, Zi from all the atom coordinates
in that molecule. To align the resulting positions Xi′, Yi′, Zi′ of
the common motif in all the molecules, a rotation is now
required. This is derived by finding the eigenvectors of the
autocovariance matrix of the vectors Xi′, Yi′, Zi′. These eigen-
vectors are the principal components of the molecule i. The
autocovariance matrix Si for a molecule is defined as

The eigenvectors of Si are denoted as λi,0, λi,1, and λi,2 in
descending order of eigenvalue. We can rotate the molecule
by forming the rotation matrix Λi for each molecule, i, and
applying this matrix to all of the atomic positions in the
molecule.

Each molecule, i, is rotated by its associated Λi, yielding
coincident atomic positions in the common motif. It is impor-
tant to check that the determinant of Λi, is equal to unity
otherwise Λi may invert the molecule, since if λi,0 is an
eigenvector of Λi so is -λi,0.

Testing SOMFA. Two sets of molecules were investigated
to test the SOMFA technique. The first set was the widely
studied steroid set5,9,17,35-47 which has become a QSAR bench-

mark. These steroids exhibit a range of binding affinities for
corticosteroid-binding globulin (CBG). The second set was a
series of sulfonamide compounds48 which act as endothelin
inhibitors. Both sets of molecules were geometry-optimized
at the AM149 level using MOPAC 6.0.50 The atom-centered
point charges used to generate the electrostatic potential in
SOMFA were derived by fitting to reproduce the AM1 quan-
tum mechanical molecular electrostatic potential, using the
RATTLER software.51,52

The steroid compounds were aligned by forming a PCA fit
of the common steroid core across all molecules. The alignment
of the molecules is shown in Figure 3. We should bear in mind
that this alignment does not take into account any electrostatic
features; consequently, we may be biasing the results in favor
of shape. A grid size of 25 Å3 was used for all the steroid
molecules. This allowed the value of the electrostatic potential
to fall to a low level before grid truncation. For the results
presented here, a grid resolution of 2 points per angstrom was
used.

In line with most published results for the steroid set (Table
2), the relative binding affinities for CBG of molecules 1-21
were used to train the SOMFA grid. Molecules 22-31 formed
prediction set A and were then predicted from this grid;
molecule 31 is a significant outlier for this set. It has been
suggested that this anomaly is due to it being fluorinated at
the 9 carbon5,39,43 (see Table 2a, steroid 1 for the standard
numbering system of the steroid ring); however, we would
argue that a QSAR method should be robust enough to handle
such a small change of structure. Referring back to the original
experimental work,53-55 a better reason for this anomaly would
be the different experimental techniques used to calculate the
CBG binding affinities. Indeed this is even alluded to by
Westphal.53 For this reason we have also used an additional
12 steroids,56 where CBG binding affinities have been obtained
by the same experimenters, using the same technique as that
used for the 21 training steroids. These extra molecules include
a compound fluorinated at the same position as the notorious
steroid 31. These steroids will be referred to as steroid
prediction set B.

The 35 sulfonamide molecules (Table 3) and associated data
were taken from a paper by Krystek et al.48 The structures
were aligned using PCA; the common structural motif used is
denoted by the asterisks on structure 1 of Table 3. The
alignments are shown in Figure 4. For the SOMFA analysis a
30 Å cubic grid with 2 points per angstrom was used. The
training set was made up from every even numbered sulfon-
amide (presented in Table 3). The other half of the molecular
set was used for test predictions. This represents a very harsh
test of the predictive ability of SOMFA.

Results and Discussion

The results of grid-based QSAR are usually dependent
on the grid resolution and the orientation of the
molecules with respect to the grid. For example, it is
known that in CoMFA if too coarse a grid is used, the

Figure 2. An example of an unknown molecule to be predicted
by SOMFA.

Si ) [Xi′‚Xi′ Xi′‚Yi′ Xi′‚Zi′
Xi′‚Yi′ Yi′‚Yi′ Yi′‚Zi′
Xi′‚Zi′ Yi′‚Zi′ Zi′‚Zi′

] (4)

Λi ) [λi,0

λi,1

λi,2
] (5)

Figure 3. Overlay of all 31 steroid structures using PCA.
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Table 2. Structures of the Steroid Compounds

Training Molecules (1-21) and Prediction Set A (22-31)
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quality of QSAR is likely to be degraded; however, if
the grid is too fine, the amount of noise in the descriptor
data is increased and thus the model is again de-
graded.8,9 During the SOMFA investigation of the
steroid test set, grid spacings of 1, 0.5, 0.25, and 0.2 Å
were investigated. The 1 Å grid spacing produced a good
correlation. This improved marginally with the 0.5 Å
spacing used for the results presented here. Further
increases in resolution produced further small increases
in model quality but not enough to warrant the extra
computational time. The relative orientation of the
molecules with respect to the grid were not explicitly
investigated, since marginal variation of results with
grid spacing suggest this will not be significant at the
0.5 Å resolution used here. The results using this grid
resolution are discussed below.

The value of the correlation coefficients, presented in
Figures 5-8, for training sets and prediction sets are
excellent in both the steroid and sulfonamide cases. The
ability to predict on novel data is the most important
test for any new QSAR method. By using test sets to
make genuine but verifiable predictions we have shown
the high-correlation coefficients of the training sets are
a true reflection of the models’ predictive ability and
not due to chance correlations.

The correlation coefficient between predicted activity
and experimental activity varies with c1 (see eq 3), as
shown in Figures 5 and 6 for the steroid and sulfon-
amide sets, respectively. We note the maximum of
correlation for the training set curves in both figures
does not correspond exactly to the maximum of correla-
tion for the prediction set curves. However, the maxima
for the training sets are close to the maxima in the
prediction set curves. Indeed, predictions made at the
optimal c1 defined by the training data have almost
identical correlation coefficients to predictions made at
the maxima of the prediction sets. It thus seems
reasonable to presume that the value of c1 that yields
optimal predictive power in the training set is a reason-
able value to use for true predictions. The optimal
training ratio of 6:4 in favor of shape was used for all
steroid prediction set results discussed later. Similarly,
the optimal training ratio of approximately 7:3 in favor
of shape was used for all sulfonamide prediction set
results. This ensures that subsequent comparisons with
other QSAR methods are fair.

Looking at Figure 7, the steroid set predicted activites
versus experimental activities, steroid 31 was predicted
as an outlier, as with most other methods. However in
set B we see steroid 35, the similarly fluorinated

Table 2 (Continued)

Prediction Set B
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Table 3. Structure of the Sulfonamides
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compound, is not such an outlier. This suggests that
fluorination per se is not a problem for the steroid set.
The problems with steroid 31 are probably due to the
differences in the experimental techniques used to
derive the training data and those used to derive the
data for steroids 22-31.

A comparison of the predictive powers of SOMFA
compared with other QSAR methods is given in Table
4. The table shows two sets of COMFA results, derived
by Bravi et al.41 These results improve on the original
CoMFA paper5 through the use of conformational selec-
tion techniques and a similarity-based alignment algo-
rithm.39 The better CoMFA results, CoMFA (FFD) were
obtained using a fractional factorial design (FFD),41

using only those training data found to have the most
explanatory power. The other results used for compari-
son were obtained using the neural network based
COMPASS technique,38 the similarity matrix tech-
nique,57 and the MS-WHIM41 approach of looking at the
molecular surface parameters of a molecule using an
alignment invariant method. The quality of the models
is to be compared using the so-called standard deviation

of errors of prediction (SDEP),41 which is the root-mean-
square error of the predictions. For the full prediction
set A, of 10 molecules, SOMFA yields the best predic-
tions, as judged by the SDEP. When steroid 31 is
ignored, COMPASS has the lowest SDEP; however,
SOMFA and CoMFA (FFD) have comparable predic-
tivities to COMPASS and have the advantage that the
results can be more easily interpreted. We also note that
the SOMFA method has not used any form of fractional
factorial design and is considerably simpler.

The visualization of the shape master grid for the
steroid sets is shown in Figure 9. Steroid 1 is included
for reference. In this map of important features we see
a high density of high-value red points around the side
chain at carbon atom 17. We also see a high density of
high-value red grid points around the carbon atom 19
methyl group. This suggests both these moieties are
sterically favorable, and further steric bulk here may
increase CBG binding affinities. We note that these two
areas are very similar to the areas favoring steric bulk
which were predicted in the original CoMFA paper.
Similarly areas where steric bulk is unfavorable for
steroid CBG affinity (areas colored blue in Figure 9) are
also in similar regions to those highlighted by CoMFA.
However, we note that in the SOMFA model these areas
have a low density of points, and may not be as
important as other molecular features highlighted by
the model.

Figure 4. Overlay of all 35 sulfonamide structures using PCA.

Figure 5. The variation with c1 of the correlation between
predicted and experimental binding affinities for the steroid
data set. The prediction set data includes all set A and all set
B.

Figure 6. The variation with c1 of the correlation between
predicted and experimental endothelin inhibition for the
sulfonamide data set.

Figure 7. The scatter of the observed against predicted
binding affinities for the steroid data using a 6:4 weighting of
shape to electrostatic potential. The plotted lines are y ) x.
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Several views of the electrostatic master grid are
given in Figure 10. A full appreciation of the grid can
only be obtained from the VDU. SOMFA has no prob-
lems identifying the key electrostatic features, which
are seen to be consistent with the structural features
of the steroids. If one looks at the distribution of
hydroxyl and carboxyl groups in the most active (ste-
roids 6 and 7) and least active (steroids 2, 3, 9, 13, 14,
15) compounds, we see areas where the electrostatic
potential might be expected to be important. The
SOMFA model finds a large area of negative potential
to be important around carbon atom 3. The most active
compounds have a carbonyl group at this position. The

model also suggests there is a large, important area of
positive potential around the five-membered ring at the
other end of the steroid fused ring system. Finally we
have a smaller area of negative potential in the vicinity
of carbon atom 17. This appears to be associated with a
carbonyl group on the side chain of the more active
compounds. The carbon 17 side chain on the most active
compounds appears as a feature in both the electrostatic
and shape grids. Its presence on one grid may be an
artifact of its necessity on another grid. Careful choice
of ligand design could test this theory, for example by
changing the side chain on steroid 6 so that it is only
hydrocarbon.

The maps presented fit well with the data provided.
They give a good description of the structural features
of a steroid that may lead to or detract from activity.
This suggests ways of modifying existing steroids to
improve their CBG binding affinities. We note that these
are maps of the ligand, not the active site. From a map
of the ligand we may make inferences about the active
site, though this has not been done here. However, it is
important to remember that some features that make
a ligand active do not necessarily correspond directly
to interactions in the binding cleft. There may be
features that assist ligand binding in some other way,
such as helping the ligand into the binding cleft in the
first place.

With the sulfonamide set (Figure 8) we see that the
calculated activities do not have the same amount of
variance as the measured activities. This is a problem
of alignment. The aim of this article is to compare
SOMFA with established QSAR techniques. Thus to be
able to compare the SOMFA master grids with the
CoMFA contour plots generated by Krystek et al.48 we
have necessarily used the same alignments. Using a

Figure 8. The scatter of the observed against predicted
activities for the sulfonamide data using a 7:3 weighting of
shape to electrostatic potential. The plotted lines are y ) x.

Table 4. Comparison of SOMFA Results with Other Highly Predictive QSAR Techniques for Steroid Prediction Set A

steroid
measured
activity CoMFAa

CoMFA
(FFD)a

similarity
matrix analysisc COMPASSb MS-WHIMa SOMFA

22 -7.512 -8.084 -7.883 -7.453 -7.062 -7.300 -7.279
23 -7.553 -7.666 -7.430 -7.022 -7.729 -8.332 -7.034
24 -6.779 -6.538 -6.642 -6.939 -6.462 -6.821 -6.925
25 -7.2 -7.804 -7.705 -7.146 -7.466 -7.445 -7.232
26 -6.144 -6.396 -6.495 -5.908 -5.994 -6.121 -5.744
27 -6.247 -7.346 -6.962 -7.046 -6.383 -6.901 -6.800
28 -7.12 -7.010 -6.848 -6.569 -6.625 -6.532 -6.603
29 -6.817 -6.864 -6.816 -6.850 -7.403 -6.838 -6.692
30 -7.688 -7.970 -7.767 -7.539 -7.741 -7.860 -7.345
31 -5.797 -8.005 -7.793 -7.457 -7.779 -7.491 -7.283

SDEP 0.837 0.716 0.640 0.705 0.662 0.584
(0.486)d (0.356)d (0.385)d (0.339)d (0.411)d (0.367)d

a See ref 39, Table 8. b Reference 34, Table 4. c Reference 51. d Excludes steroid 31.

Figure 9. The steroid set shape master grid. Red represents
areas of favorable steric interactions. Blue represents areas
of unfavorable steric interactions. Steroid 1 is included as a
frame of reference.
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different alignment rule we have obtained significantly
improved results with significantly different master
grids. To keep this article focused on the SOMFA
methodology and how it compares to existing techniques
these alternative results will be presented elsewhere.
Here we wish to show that for the same alignment as
previously used we can get results similar to those from
methods already well established. This is another
example of how 3D-QSAR methodologies require good
structural alignment to obtain the best results.5,40-42

This is an area where we hope to improve the SOMFA
application soon. Indeed we think SOMFA may be
ideally suited to tackling the alignment and conforma-
tional problems highlighted by Cramer5 and others40,41

as the most important stage in 3D-QSAR methods.
Visualization of the sulfonamide trained lattices in

terms of shape (Figure 11) and electrostatics (Figure 12)
does not show the same level of interpretable detail as
the steroid lattices. However, we may identify three
regions of interest. First, we can see that steric bulk is
tolerated only in a fairly narrow channel from the 5

position of the 1-substituted naphthyl structures. Sec-
ond, in terms of the electrostatics we can see that a build
up of positive charge is apparently favorable below the
4 or 5 positions of the 1-substituted naphthyl structures.
Third, we can see a region where addition of negative
charge may be expected to enhance activity. All of these
features captured by SOMFA were noted by Krystek48

in his original CoMFA analysis of the data set.
A SOMFA model could be based on any molecular

property; here we have used the molecular shape and
the molecular electrostatic potential. The SOMFA model
also suggests a method of tackling the all-important
alignment problem, which all 3D-QSAR methods face.
The inherent simplicity of the method allows the pos-
sibility of aligning the training compounds as an inte-
gral part of the model derivation process and of aligning
prediction compounds to optimize their predicted activ-
ity. Ongoing work in this area suggests that this new
3D-QSAR technique may yield even better results than
those presented here.

Figure 10. The steroid set electrostatic potential master grid. Red represents areas where positive potential is favorable, or
negative charge is unfavorable. Blue represents areas where negative potential is favorable, or positive charge is unfavorable.
Steroid 1 is included as a frame of reference.

Figure 11. The sulfonamide set shape master grid. Sulfon-
amide 5 is included as a frame of reference. A channel of
favorable steric interactions runs between two areas of unfa-
vorable steric interactions.

Figure 12. The sulfonamide set electrostatic master grid.
Sulfonamide 5 is included as a frame of reference. The area of
favorable positive potential build lies between the 4 and 5
positions of the 1-substituted naphthyl compounds. The area
of negative potential lies above the naphthyl system and the
4 and 5 substituents.
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Conclusions

The SOMFA method presented here is a conceptually
simple, yet strikingly powerful new QSAR technique.
Its predictive power is very good as compared with some
of the best methods currently in use, yet it eschews
heavy statistical elements. Further, visual maps of the
sterically and electrostatically important features of lead
compounds can be used to guide the drug design process.
The method should be suitable for diverse sets of
compounds. Very good results have been obtained for
steroids with affinity for CBG and also for a series of
sulfonamide endothelin inhibitors. Such is the speed and
simplicity of the approach that we believe we can
introduce molecular alignment and conformational flex-
ibility into the search for the best 3D-QSAR model.
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